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1 Introduction 

Man has strived to make objects fly faster, first from subsonic to supersonic and then to 

hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach 

numbers, A4 > 5. In defense applications, aircraft reach hypersonic speeds at high altitude 

and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, 

has formidable challenges that have spurred vigorous research and development, mainly by 

NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of 

the eighties and early nineties, did not lead to flight demonstration, much basic research and 

technology development was possible. There is renewed interest in supersonic and hypersonic 

flight with the HyTech program of the Air Force and the Hyper-X program at NASA being 

examples of current thrusts in the field. 

At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly im- 

portant in the turbulent boundary layers and shear layers associated with the flow around 

aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, 

interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the 

flow may be qualitative such as shocks which have no incompressible counterpart, or qum- 

titative such as the reduction of skin friction with Mach number, large heat transfer rates 
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due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective 

Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, 

have been reviewed by Fernholz and Finley (1976); Bradshaw (1977); Lele (1994); Smits 

& Dussauge (1996); Chassaing et al. (2002). Predictions of aerodynamic performance in 

high-speed applications require accurate computational modeling of these 'compressibility 

effects' on turbulence. 

During the course of the project we have made fundamental advances in modeling the 

pressure-strain correlation and developed a code to evaluate alternate turbulence models in 

the compressible shear layer. 

2 The pressure-strain correlation 

Pressure fluctuations, through the pressure strain correlation, impact Reynolds stress levels. 

The pressure strain correlation is defined by 

where p' is the fluctuating pressure and tluy/&j the fluctuating strain rate. This term is 

important in a turbulent shear flow because it transfers kinetic energy from the stream- 

wise component, u " ~ ,  to the crossstream component, v " ~ ,  and thus, indirectly, through the 

Reynolds shear stress production term, ~ " ~ t l C / a y ,  it effects the all-important turbulent shear 

stress, u"v". The finite propagation speed of pressure signals, the speed of sound, can be 

comparable to other velocity scales in flows when the Mach number is not small. Further- 

more, the entropy mode maintained by large variations in mean density/temperature can 

couple with the pressure fluctuations. Therefore, Reynolds stress levels may be expected to 

be significantly different in compressible flow and, indeed, newer experimental and simulation 

studies show such behavior. 

- - 
- 

- 

Unlike laboratory experiments, statistics such as pressure strain and root-mean-square 

thermodynamic fluctuations are available in DNS so that analysis of the pressure/turbulence 
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coupling is facilitated. The available DNS data in free shear layers show that the pressure- 

strain correlation is strongly affected and, in particular, all components decrease with Mach 

number. With such clear evidence, it is clear that a sound strategy for the accurate prediction 

of compressible flows must involve modeling compressibility effects on the pressure-strain 

term within the framework of a full Reynolds stress closure. 

Compressible uniform shear flow with an imposed linear mean velocity gradient was 

studied by S a r k  (1995). The gradient Mach number, Mg = SZ/i?, was varied in the subsonic- 

to-supersonic regime, with values ranging between Mg = 0.5 and Mg = 5. Here S = %/ay is 

the constant mean shear, Z the turbulence integral length scale in the cross-stream direction 

and E the mean speed of sound. The growth rate of turbulent kinetic energy was found 

to decrease with increasing values of Mach number. The reduction of turbulence levels 

was related to the inhibited turbulence production, P = -Su"v", and not to the explicit 

dilatational terms: the compressible dissipation and pressure dilatation. Sarkar (1996) noted 

that pressure fluctuations were reduced in cases with high gradient Mach number and stated 

that a change in the pressure gradient term in the momentum equations (and the pressure- 

strain term in the Reynolds stress equations) leads to reduced levels of turbulence. 

- 

Pantano and S a r h  (2001) studied the temporally-evolving shear layer between two 

streams with different velocities. Simulations were performed for the air-air shear layer with 

three values of the convective Mach number, M, = (Ul - Uz)/(cl + c2) = 0.3, 0.7, and 1.1. 

Fig. 1 shows that the DNS results capture the dramatic reduction of thickness growth rate 

and agree well with the Langley experimental curve which is a consensus of experiments 

with various air-air shear layers. Interestingly, the growth rates in Fig. 1 which are lower 

than the Langley curve were measured in experiments with dissimilar gas streams. This 

observation prompted additional simulations by Pantano and Sarkar (2001) who found an 

effect of freestream density ratio over and above that of the convective Mach number. 

All components of the Reynolds stress tensor were measured in the shear layer DNS 

and found to decrease 

the shear layer was in 

with increasing values of M,. 

an approximately self-similar 

During the late-time evolution when 

state, the decrease was similar in all 
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components so that the Reynolds stress anisotropy remained relatively unaffected by M,. 
However, during the early-time evolution, when the shear number, SKI€,  was larger than 

its equilibrium value, the ratio of I J ’ ’ ~ / U ” ~  showed a systematic decrease with increasing M,. 
As alluded to in the introduction, the pressure-strain, defined by Eq. (1) can be expected 

to change as a function of M,. Fig. 2 shows the pressure-strain correlation, integrated 

across the shear layer, as a function of M, and, indeed, all components of the pressure-strain 

correlation as well as the r.m.s pressure fluctuations decrease with increasing M,. A reason 

for this ‘‘fluctuating pressure” effect of compressibility was identified by Pantano and Sarkar 

(2001) who, by performing an analysis of the wave equation for pressure at the center of 

the shear layer assuming locally-homogeneous turbulence, were able to predict a monotone 

reduction of the pressure-strain with increasing M,. The associated physical mechanism is 

that the acoustic time delay, Z/c, of signals traversing adjacent points of an “eddy” implies 

additional decorrelation between these points and, therefore, a contribution to the pressure- 

strain term which is smaller than in the incompressible, infinite-signal speed case. 

- -  

Laboratory data of Elliott & Samimy (1990), Barre et al. (1994), and more recently, 

Chambres et al. (1999) show that d measured turbulence intensities and the Reynolds shear 

stress decrease with increasing values of the convective Mach number M,. However, Goebel 

& Dutton (1991) find experimentally that the streamwise turbulence intensity remains rela- 

tively unchanged while all other components of the Reynolds stress tensor decrease. Despite 

this disagreement, based on the experimental data, it is certain that compressibility does ef- 

fect the turbulence structure. There are some effects on turbulence structure in wall-bounded 

high-speed flows as discussed by Smits & Dussauge (1996) but these effects are less clear 

because of the difficulties in making measurements. However, it does appear that, for the 

same d u e  of Mach number based on outer variables, the effect on turbulence structure is 

perhaps weaker in wall-bounded flows relative to free shear flows. 
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gradients. Mt is not the main conthbutor to compressibility effects in shear flows because 

applications of Mt-based modifications that work in the compressible shear layer are found 

to cause underprediction of skin friction in the high-speed boundary layer (especially the 

cooled case). 

Calibration of Mg and Mt dependences in the pressurestrain model must be performed 

taking the Langley growth rate curve into account. Under the assumptions of a temporally- 

evolving shear layer and high Reynolds number, the momentum thickness growth rate is 

given by 

where the overbar indicates quantities obtained by integrating self-similar profiles over the 

width of the shear layer and 511, R11 denote the streamwise components of the turbulent 

dissipation rate and pressurestrain correlation. If g11 is assumed to  be a constant fraction 

of nl1 given by the baseline incompressible model, then the experimental curve, &(Mc), can 

be directly used to obtain ITll(Mc). Now, the convective Mach number can be related to Mg 
at the centerline following S a r h  (1995), 

With knowledge of the functional relationship, Il l1 ( M J ,  the required compressibility modi- 

fications can be accomplished. 

4 The pressure fluctuation equation 

The starting point of analysis of the pressurestrain correlation is an equation for the fluc- 

tuating pressure, p'. After taking the divergence of the momentum equation and using the 

continuity equation, the following wave equation for the fluctuating pressure ensues, 
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where we use the notation 

On the r.h.s. (the source terms) of Eq. 4, the first line involves mean velocity gradients 

and the total density, the second line involves fluctuating velocity gradients and the total 

density, the third line contains density fluctuations and mean velocity gradients, and the final 

term is the viscous term, usuaUy small relative to the others. It is clear that deviations in p' 

from the incompressible solution originate from three effects: (1) a wave operator instead of 

the Laplacian, (2) mean density gradients in the source, and (3) fluctuating density gradients 

in the source. The relative importance of these effects depend on the flow in question. 

5 Green's function analysis 

The pressure equation, Eq. 4, has a formal solution in terms of the Green's function convolved 

with the forcing terms which can then be used to obtain the pressure-strain term. The 

Green's function in the case of zero mean velocity gradient is a simple harmonic function 

that is isotropic, that is, without any dependence on the angle of wave propagation. The 

resulting compressibility effect on pressure strain was shown by Pantano and Sarkar (2001) 

to be a monotone reduction with increasing Mach number. The Green's function, G, for 

uniform shear flow has now been derived by Thacker, Sarkar & Gatski (2004) and involves 

parabolic cylinder functions exhibiting oscillatory behavior having, at long time, increasing 
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3 Computational model 

The compressible Navier-Stokes equations for the mean velocity, density and temperature 

along with equations for the Reynolds stress tensor and dissipation rate are applied. This 

compressible second-order closure has a framework similar to the studies of Gatski et al. 

(1990); Speziale & Sarkar (1991). The baseline pressure strain model applicable for the 

limit of zero Mach number will be the SSG model developed by Spezide, S a r h  & Gatski 

(1991) that has been found to work well in a variety of complex turbulent flows in the low- 

speed case. We are developing a compressibility modification of this model valid for high 

speeds. The basis of the new pressure strain model is that the parameters that determines 

the effect of compressibility are the gradient Mach number, Mg = SZ/c, and the turbulent 

Mach number, Mt. We emphasize that using Mg is suggested by both DNS of uniform 

shear flow, Sarkar (1995), and DNS of the shear layer, Pantano and Sarkar (2001). The 

simplest-possible compressible pressure strain model is 

where f ( M , )  is an arbitrary function of the gradient Mach number and Ilk is the SSG 

pressure strain model. As discussed later, our analysis suggests that such a model is likely 

too simplified and, instead, each term in the the SSG model has a dependence on Mg and 

Mt . 
An alternative to the gradient Mach number is the mean Mach number based on a 

characteristic mean velocity difference, AU in the shear layer or V ,  in the boundary layer. 

The mean Mach number is not a universal correlating parameter because of the following 

experimental observation: When the mean Mach number is unity in the free shear layer, 

the Reynolds stresses are strongly reduced; however, at unity Mach number, the Reynolds 

stresses are hardly affected in the boundary layer. Another parameter is the turbulent Mach 

number based on the local magnitude of the fluctuation velocity, for example, q = d%?, 
where K is the turbulent kinetic energy. The turbulent Mach number, Mt = q/u, determines 

compressibility of the velocity fluctuations in contrast to M, which is related to mean velocity 

5 



frequency and decaying amplitude. G depends on the mean shear, S = diZl/dx2, the speed of 

sound, c, and the wave number vector, k, of the forcing through the following nondimensional 

quantities: Mt, M&, and k2. Here, kl and IC2 denote the nondimensional streamwise and 

cross-stream (in direction of shear) wave numbers. 

The Green’s function has the following characteristics. First, it has pronounced anisotropy 

as long as Mg is not too small. For example, during the initial temporal evolution, both the 

Green’s function amplitude and time period show monotone decrease if the wave propagates 

downstream (zl-component parallel to the mean flow) while, propagating upstream, both 

the amplitude and time period may decrease or increase depending on the circumstances. 

Thus, for some propagation angles, the maximum amplitude of the Green’s function is not 

at t = 0. Second, with increasing Mt, the anisotropy is not diminished while both the ampli- 

tude and frequency of the oscillations decrease. Third, with increased wave number, I C ,  there 

is less anisotropy; also, the amplitude of the Green’s function decreases while the frequency 

increases. 

The Green’s function analysis has been used to obtain compressibility effects on the 

rapid pressure-strain term, the component having explicit dependence on the mean velocity 

gradient, in uniform shear flow. A monotone reduction with increasing Mg and Mt of all 

the diagonal terms are found in agreement with DNS data. The off-diagonal term, n12, of 

the rapid component is relatively unaffected in contrast to DNS data suggesting that, to 

have a complete picture of compressibility effects in uniform shear flow, the slow component 

explicitly dependent on velocity fluctuations must also be taken into account. 
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Mc 

Figure 2: Open symbols nij/nij and filled symbols pm/pfm. Each quantity is normalized 

by its incompressible counterpart. 
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Figure 1: Dependence of shear layer growth rate on M,. 


